Sequence-specific deoxyribonucleic acid (DNA) recognition by steroidogenic factor 1: a helix at the carboxy terminus of the DNA binding domain is necessary for complex stability.

نویسندگان

  • Tanya H Little
  • Yongbo Zhang
  • Christina K Matulis
  • Jennifer Weck
  • Zhipeng Zhang
  • Aparna Ramachandran
  • Kelly E Mayo
  • Ishwar Radhakrishnan
چکیده

Steroidogenic factor 1 (SF1) is a member of the NR5A subfamily of nuclear hormone receptors and is considered a master regulator of reproduction because it regulates a number of genes encoding reproductive hormones and enzymes involved in steroid hormone biosynthesis. Like other NR5A members, SF1 harbors a highly conserved approximately 30-residue segment called the FTZ-F1 box C-terminal to the core DNA binding domain (DBD) common to all nuclear receptors and binds to 9-bp DNA sequences as a monomer. Here we describe the solution structure of the SF1 DBD in complex with an atypical sequence in the proximal promoter region of the inhibin-alpha gene that encodes a subunit of a reproductive hormone. SF1 forms a specific complex with the DNA through a bipartite motif binding to the major and minor grooves through the core DBD and the N-terminal segment of the FTZ-F1 box, respectively, in a manner previously described for two other monomeric receptors, nerve growth factor-induced-B and estrogen-related receptor 2. However, unlike these receptors, SF1 harbors a helix in the C-terminal segment of the FTZ-F1 box that interacts with both the core DBD and DNA and serves as an important determinant of stability of the complex. We propose that the FTZ-F1 helix along with the core DBD serves as a platform for interactions with coactivators and other DNA-bound factors in the vicinity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA

A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...

متن کامل

Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA.

The crystal structure of the complex between the N-terminal DNA-binding domain of Tc3 transposase and an oligomer of transposon DNA has been determined. The specific DNA-binding domain contains three alpha-helices, of which two form a helix-turn-helix (HTH) motif. The recognition of transposon DNA by the transposase is mediated through base-specific contacts and complementarity between protein ...

متن کامل

Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1.

The orphan nuclear receptor, steroidogenic factor-1 (SF-1), plays an important role in the development of the adrenal gland and in sexual differentiation. SF-1 regulates the transcription of variety of genes, including several steroidogenic enzymes, Müllerian inhibiting substance, and gonadotropin genes. In this report, we sought to identify domains in SF-1 that are required for transactivation...

متن کامل

Identification of indispensable residues for specific DNA-binding in the imperfect tandem repeats of c-Myb R2R3.

The individual repeats, R2 and R3, of the minimum specific DNA-binding domain (R2R3) of c-Myb have very similar structures, with a helix-turn-helix variation motif, although their sequence identity in the tandem repeats is only 31%. From previous mutational and structural studies, the third helices in both repeats were shown to directly recognize the specific base sequence, PyAACG/TG. In order ...

متن کامل

A single amino acid can determine the DNA binding specificity of homeodomain proteins.

Many Drosophila developmental genes contain a DNA binding domain encoded by the homeobox. This homeodomain contains a region distantly homologous to the helix-turn-helix motif present in several prokaryotic DNA binding proteins. We investigated the nature of homeodomain-DNA interactions by making a series of mutations in the helix-turn-helix motif of the Drosophila homeodomain protein Paired (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular endocrinology

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2006